A simple discussion on relative velocity

0

Have you ever notice when you are traveling on a bus and observe out from the window of the bus, objects on the ground are moving? OR when you are running, have you ever feel suddenly, the wind is starting to flow around you and when you stop, the wind also stops to flow? Similarly, when two vehicles cross each other in the opposite direction, the velocity of one vehicle observed by another person on another vehicle is more than the velocity of that vehicle observed by a person at rest on the ground. All those examples indicate that the velocity of one object depends on the velocity of the body from which it is observed. In all those process phenomena of relative velocity works. The relative velocity refers to the velocity of one body concerning another body.

Mathematical description of relative velocity

The relative velocity represents the resultant of vector subtraction. It can be obtained by calculating the resultant of vector addition between <math xmlns="http://www.w3.org/1998/Math/MathML" display="block" data-is-equatio="1" data-latex="\overrightarrow{V_{A}}"><mover><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mi>A</mi></mrow></msub><mo>→</mo></mover></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="block" data-is-equatio="1" data-latex="-\overrightarrow{V_{B}}"><mo>−</mo><mover><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mi>B</mi></mrow></msub><mo>→</mo></mover></math> which gives the vector subtraction .  So, the relative velocity of body A with respect to body B with velocity <math xmlns="http://www.w3.org/1998/Math/MathML" display="block" data-is-equatio="1" data-latex="\overrightarrow{V}_{A}"><msub><mover><mi>V</mi><mo>→</mo></mover><mrow data-mjx-texclass="ORD"><mi>A</mi></mrow></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="block" data-is-equatio="1" data-latex="\overrightarrow{V_{B}}"><mover><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mi>B</mi></mrow></msub><mo>→</mo></mover></math>  respectively is given by


 <math xmlns="http://www.w3.org/1998/Math/MathML" display="block" data-is-equatio="1" data-latex="\overrightarrow{V_{AB}}=\overrightarrow{V_{A}}+\left( -\overrightarrow{V_{B}}\right) "><mover><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mi>A</mi><mi>B</mi></mrow></msub><mo>→</mo></mover><mo>=</mo><mover><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mi>A</mi></mrow></msub><mo>→</mo></mover><mo>+</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mo>−</mo><mover><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mi>B</mi></mrow></msub><mo>→</mo></mover><mo data-mjx-texclass="CLOSE">)</mo></mrow></math>

<math xmlns="http://www.w3.org/1998/Math/MathML" display="block" data-is-equatio="1" data-latex="\overrightarrow{V_{AB}}=\overrightarrow{V_A}-\overrightarrow{V_B}"><mover><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mi>A</mi><mi>B</mi></mrow></msub><mo>→</mo></mover><mo>=</mo><mover><msub><mi>V</mi><mi>A</mi></msub><mo>→</mo></mover><mo>−</mo><mover><msub><mi>V</mi><mi>B</mi></msub><mo>→</mo></mover></math>

 The magnitude of  <math xmlns="http://www.w3.org/1998/Math/MathML" display="block" data-is-equatio="1" data-latex="\vec{V_{AB}}"><mrow data-mjx-texclass="ORD"><mover><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mi>A</mi><mi>B</mi></mrow></msub><mo stretchy="false">→</mo></mover></mrow></math> is given by

<math xmlns="http://www.w3.org/1998/Math/MathML" display="block" data-is-equatio="1" data-latex="\left|\overrightarrow{V_A}_B\right|=\sqrt{\overrightarrow{V}_A^2+\overrightarrow{V}_B^2+2V_AV_B\cos\left(180-\theta\right)}"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mover><msub><mi>V</mi><mi>A</mi></msub><mo>→</mo></mover><mi>B</mi></msub><mo data-mjx-texclass="CLOSE">|</mo></mrow><mo>=</mo><msqrt><msubsup><mover><mi>V</mi><mo>→</mo></mover><mi>A</mi><mn>2</mn></msubsup><mo>+</mo><msubsup><mover><mi>V</mi><mo>→</mo></mover><mi>B</mi><mn>2</mn></msubsup><mo>+</mo><mn>2</mn><msub><mi>V</mi><mi>A</mi></msub><msub><mi>V</mi><mi>B</mi></msub><mi>cos</mi><mo data-mjx-texclass="NONE">⁡</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>180</mn><mo>−</mo><mi>θ</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></msqrt></math>

<math xmlns="http://www.w3.org/1998/Math/MathML" display="block" data-is-equatio="1" data-latex="\left|\overrightarrow{V_A}_B\right|=\sqrt{\overrightarrow{V}_A^2+\overrightarrow{V}_B^2-2V_AV_B\cos\theta}"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mover><msub><mi>V</mi><mi>A</mi></msub><mo>→</mo></mover><mi>B</mi></msub><mo data-mjx-texclass="CLOSE">|</mo></mrow><mo>=</mo><msqrt><msubsup><mover><mi>V</mi><mo>→</mo></mover><mi>A</mi><mn>2</mn></msubsup><mo>+</mo><msubsup><mover><mi>V</mi><mo>→</mo></mover><mi>B</mi><mn>2</mn></msubsup><mo>−</mo><mn>2</mn><msub><mi>V</mi><mi>A</mi></msub><msub><mi>V</mi><mi>B</mi></msub><mi>cos</mi><mo data-mjx-texclass="NONE">⁡</mo><mi>θ</mi></msqrt></math>

<math xmlns="http://www.w3.org/1998/Math/MathML" display="block" data-is-equatio="1" data-latex="V_{AB}\ =\ \sqrt{V\ _A^2+V\ _B^2-2V_AV_B\cos\theta}"><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mi>A</mi><mi>B</mi></mrow></msub><mtext></mtext><mo>=</mo><mtext></mtext><msqrt><mi>V</mi><msubsup><mtext></mtext><mi>A</mi><mn>2</mn></msubsup><mo>+</mo><mi>V</mi><msubsup><mtext></mtext><mi>B</mi><mn>2</mn></msubsup><mo>−</mo><mn>2</mn><msub><mi>V</mi><mi>A</mi></msub><msub><mi>V</mi><mi>B</mi></msub><mi>cos</mi><mo data-mjx-texclass="NONE">⁡</mo><mi>θ</mi></msqrt></math>


Now, consider different conditions

Condition 1: When two bodies A and B are moving in the same direction <math xmlns="http://www.w3.org/1998/Math/MathML" display="block" data-is-equatio="1" data-latex="\left(\theta\ =\ 0^{\circ}\right)"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>θ</mi><mtext></mtext><mo>=</mo><mtext></mtext><msup><mn>0</mn><mrow data-mjx-texclass="ORD"><mo>∘</mo></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow></math>

Let suppose body A is moving with velocity <math xmlns="http://www.w3.org/1998/Math/MathML" display="block" data-is-equatio="1" data-latex="\vec{V_A}"><mrow data-mjx-texclass="ORD"><mover><msub><mi>V</mi><mi>A</mi></msub><mo stretchy="false">→</mo></mover></mrow></math>  and body B is moving with velocity <math xmlns="http://www.w3.org/1998/Math/MathML" display="block" data-is-equatio="1" data-latex="\vec{V_B}"><mrow data-mjx-texclass="ORD"><mover><msub><mi>V</mi><mi>B</mi></msub><mo stretchy="false">→</mo></mover></mrow></math>  in same direction the relative velocity of A with respect to B is given by

<math xmlns="http://www.w3.org/1998/Math/MathML" display="block" data-is-equatio="1" data-latex="\overrightarrow{V_{AB}}=\overrightarrow{V_A}-\overrightarrow{V_B}"><mover><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mi>A</mi><mi>B</mi></mrow></msub><mo>→</mo></mover><mo>=</mo><mover><msub><mi>V</mi><mi>A</mi></msub><mo>→</mo></mover><mo>−</mo><mover><msub><mi>V</mi><mi>B</mi></msub><mo>→</mo></mover></math>

The magnitude of <math xmlns="http://www.w3.org/1998/Math/MathML" display="block" data-is-equatio="1" data-latex="\vec{V_{AB}}"><mrow data-mjx-texclass="ORD"><mover><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mi>A</mi><mi>B</mi></mrow></msub><mo stretchy="false">→</mo></mover></mrow></math>  is given by

 <math xmlns="http://www.w3.org/1998/Math/MathML" display="block" data-is-equatio="1" data-latex="\left|\vec{V_{AB}}\right|\ =\ \sqrt{\vec{V}_A^2+\vec{V}_B^2-2V_AV_B\cos0^{\circ}}"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mrow data-mjx-texclass="ORD"><mover><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mi>A</mi><mi>B</mi></mrow></msub><mo stretchy="false">→</mo></mover></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><mtext></mtext><mo>=</mo><mtext></mtext><msqrt><msubsup><mrow data-mjx-texclass="ORD"><mover><mi>V</mi><mo stretchy="false">→</mo></mover></mrow><mi>A</mi><mn>2</mn></msubsup><mo>+</mo><msubsup><mrow data-mjx-texclass="ORD"><mover><mi>V</mi><mo stretchy="false">→</mo></mover></mrow><mi>B</mi><mn>2</mn></msubsup><mo>−</mo><mn>2</mn><msub><mi>V</mi><mi>A</mi></msub><msub><mi>V</mi><mi>B</mi></msub><mi>cos</mi><mo data-mjx-texclass="NONE">⁡</mo><msup><mn>0</mn><mrow data-mjx-texclass="ORD"><mo>∘</mo></mrow></msup></msqrt></math>

<math xmlns="http://www.w3.org/1998/Math/MathML" display="block" data-is-equatio="1" data-latex="\left|\vec{V_{AB}}\right|\ =\ \sqrt{V_A^2+V_B^2-2V_AV_B}"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mrow data-mjx-texclass="ORD"><mover><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mi>A</mi><mi>B</mi></mrow></msub><mo stretchy="false">→</mo></mover></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><mtext></mtext><mo>=</mo><mtext></mtext><msqrt><msubsup><mi>V</mi><mi>A</mi><mn>2</mn></msubsup><mo>+</mo><msubsup><mi>V</mi><mi>B</mi><mn>2</mn></msubsup><mo>−</mo><mn>2</mn><msub><mi>V</mi><mi>A</mi></msub><msub><mi>V</mi><mi>B</mi></msub></msqrt></math>

<math xmlns="http://www.w3.org/1998/Math/MathML" display="block" data-is-equatio="1" data-latex="V_{AB}\ =\ \sqrt{\left(V_A^{ }-V_B^{ }\right)^2}^{ }"><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mi>A</mi><mi>B</mi></mrow></msub><mtext></mtext><mo>=</mo><mtext></mtext><msup><msqrt><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msubsup><mi>V</mi><mi>A</mi><mrow data-mjx-texclass="ORD"/></msubsup><mo>−</mo><msubsup><mi>V</mi><mi>B</mi><mrow data-mjx-texclass="ORD"/></msubsup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mn>2</mn></msup></msqrt><mrow data-mjx-texclass="ORD"/></msup></math>

<math xmlns="http://www.w3.org/1998/Math/MathML" display="block" data-is-equatio="1" data-latex="V_{AB}\ =V_A^{ }-V_B^{ }"><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mi>A</mi><mi>B</mi></mrow></msub><mtext></mtext><mo>=</mo><msubsup><mi>V</mi><mi>A</mi><mrow data-mjx-texclass="ORD"/></msubsup><mo>−</mo><msubsup><mi>V</mi><mi>B</mi><mrow data-mjx-texclass="ORD"/></msubsup></math>



Condition 2: When two bodies A and B are moving in opposite direction

Let us suppose body A is moving with velocity <math xmlns="http://www.w3.org/1998/Math/MathML" display="block" data-is-equatio="1" data-latex="\overrightarrow{V}_{A}"><msub><mover><mi>V</mi><mo>→</mo></mover><mrow data-mjx-texclass="ORD"><mi>A</mi></mrow></msub></math>  velocity and body B is moving with velocity <math xmlns="http://www.w3.org/1998/Math/MathML" display="block" data-is-equatio="1" data-latex="\overrightarrow{V}_B"><msub><mover><mi>V</mi><mo>→</mo></mover><mi>B</mi></msub></math> in the opposite direction. Now the relative velocity of body A with respect to body B is given by

<math xmlns="http://www.w3.org/1998/Math/MathML" display="block" data-is-equatio="1" data-latex="\overrightarrow{V_{AB}}=\overrightarrow{V_A}-\overrightarrow{V_B}"><mover><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mi>A</mi><mi>B</mi></mrow></msub><mo>→</mo></mover><mo>=</mo><mover><msub><mi>V</mi><mi>A</mi></msub><mo>→</mo></mover><mo>−</mo><mover><msub><mi>V</mi><mi>B</mi></msub><mo>→</mo></mover></math>

The magnitude of <math xmlns="http://www.w3.org/1998/Math/MathML" display="block" data-is-equatio="1" data-latex="\overrightarrow{V}_{AB}"><msub><mover><mi>V</mi><mo>→</mo></mover><mrow data-mjx-texclass="ORD"><mi>A</mi><mi>B</mi></mrow></msub></math>  is given by


<math xmlns="http://www.w3.org/1998/Math/MathML" display="block" data-is-equatio="1" data-latex="\left|\overrightarrow{V}_{AB}\right|\ =\ \sqrt{\vec{V_A}^2+\vec{V_B}^2-2V_A^{ }V_B^{ }\cos180}^{ }"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mover><mi>V</mi><mo>→</mo></mover><mrow data-mjx-texclass="ORD"><mi>A</mi><mi>B</mi></mrow></msub><mo data-mjx-texclass="CLOSE">|</mo></mrow><mtext></mtext><mo>=</mo><mtext></mtext><msup><msqrt><msup><mrow data-mjx-texclass="ORD"><mover><msub><mi>V</mi><mi>A</mi></msub><mo stretchy="false">→</mo></mover></mrow><mn>2</mn></msup><mo>+</mo><msup><mrow data-mjx-texclass="ORD"><mover><msub><mi>V</mi><mi>B</mi></msub><mo stretchy="false">→</mo></mover></mrow><mn>2</mn></msup><mo>−</mo><mn>2</mn><msubsup><mi>V</mi><mi>A</mi><mrow data-mjx-texclass="ORD"/></msubsup><msubsup><mi>V</mi><mi>B</mi><mrow data-mjx-texclass="ORD"/></msubsup><mi>cos</mi><mo data-mjx-texclass="NONE">⁡</mo><mn>180</mn></msqrt><mrow data-mjx-texclass="ORD"/></msup></math>

<math xmlns="http://www.w3.org/1998/Math/MathML" display="block" data-is-equatio="1" data-latex="\left|\overrightarrow{V}_{AB}\right|\ =\ \sqrt{\vec{V_A}^2+\vec{V_B}^2+2V_A^{ }V_B^{ }}^{ }"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mover><mi>V</mi><mo>→</mo></mover><mrow data-mjx-texclass="ORD"><mi>A</mi><mi>B</mi></mrow></msub><mo data-mjx-texclass="CLOSE">|</mo></mrow><mtext></mtext><mo>=</mo><mtext></mtext><msup><msqrt><msup><mrow data-mjx-texclass="ORD"><mover><msub><mi>V</mi><mi>A</mi></msub><mo stretchy="false">→</mo></mover></mrow><mn>2</mn></msup><mo>+</mo><msup><mrow data-mjx-texclass="ORD"><mover><msub><mi>V</mi><mi>B</mi></msub><mo stretchy="false">→</mo></mover></mrow><mn>2</mn></msup><mo>+</mo><mn>2</mn><msubsup><mi>V</mi><mi>A</mi><mrow data-mjx-texclass="ORD"/></msubsup><msubsup><mi>V</mi><mi>B</mi><mrow data-mjx-texclass="ORD"/></msubsup></msqrt><mrow data-mjx-texclass="ORD"/></msup></math>

<math xmlns="http://www.w3.org/1998/Math/MathML" display="block" data-is-equatio="1" data-latex="\left|\overrightarrow{V}_{AB}\right|\ =\ \sqrt{V_A^2+V_B^2+2V_A^{ }V_B^{ }}^{ }"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mover><mi>V</mi><mo>→</mo></mover><mrow data-mjx-texclass="ORD"><mi>A</mi><mi>B</mi></mrow></msub><mo data-mjx-texclass="CLOSE">|</mo></mrow><mtext></mtext><mo>=</mo><mtext></mtext><msup><msqrt><msubsup><mi>V</mi><mi>A</mi><mn>2</mn></msubsup><mo>+</mo><msubsup><mi>V</mi><mi>B</mi><mn>2</mn></msubsup><mo>+</mo><mn>2</mn><msubsup><mi>V</mi><mi>A</mi><mrow data-mjx-texclass="ORD"/></msubsup><msubsup><mi>V</mi><mi>B</mi><mrow data-mjx-texclass="ORD"/></msubsup></msqrt><mrow data-mjx-texclass="ORD"/></msup></math>

 <math xmlns="http://www.w3.org/1998/Math/MathML" display="block" data-is-equatio="1" data-latex="V_{AB}\ =\ \sqrt{\left(V_A^{ }+V_B^{ }\right)^2}"><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mi>A</mi><mi>B</mi></mrow></msub><mtext></mtext><mo>=</mo><mtext></mtext><msqrt><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msubsup><mi>V</mi><mi>A</mi><mrow data-mjx-texclass="ORD"/></msubsup><mo>+</mo><msubsup><mi>V</mi><mi>B</mi><mrow data-mjx-texclass="ORD"/></msubsup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mn>2</mn></msup></msqrt></math>

<math xmlns="http://www.w3.org/1998/Math/MathML" display="block" data-is-equatio="1" data-latex="V_{AB}\ =\ V_A^{ }+V_B^{ }"><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mi>A</mi><mi>B</mi></mrow></msub><mtext></mtext><mo>=</mo><mtext></mtext><msubsup><mi>V</mi><mi>A</mi><mrow data-mjx-texclass="ORD"/></msubsup><mo>+</mo><msubsup><mi>V</mi><mi>B</mi><mrow data-mjx-texclass="ORD"/></msubsup></math>




Condition 3: When two body making an acute angle θ (90˚>θ>0˚)

Let us suppose body A is moving with velocity <math xmlns="http://www.w3.org/1998/Math/MathML" display="block" data-is-equatio="1" data-latex="\vec{V_A}"><mrow data-mjx-texclass="ORD"><mover><msub><mi>V</mi><mi>A</mi></msub><mo stretchy="false">→</mo></mover></mrow></math>  and body B is moving with velocity <math xmlns="http://www.w3.org/1998/Math/MathML" display="block" data-is-equatio="1" data-latex="\vec{V_B}"><mrow data-mjx-texclass="ORD"><mover><msub><mi>V</mi><mi>B</mi></msub><mo stretchy="false">→</mo></mover></mrow></math>  making angle θ between them. Now the relative velocity of body A with respect to body B is given by

<math xmlns="http://www.w3.org/1998/Math/MathML" display="block" data-is-equatio="1" data-latex="\overrightarrow{V_{AB}}=\overrightarrow{V_A}-\overrightarrow{V_B}"><mover><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mi>A</mi><mi>B</mi></mrow></msub><mo>→</mo></mover><mo>=</mo><mover><msub><mi>V</mi><mi>A</mi></msub><mo>→</mo></mover><mo>−</mo><mover><msub><mi>V</mi><mi>B</mi></msub><mo>→</mo></mover></math>

 The magnitude of  <math xmlns="http://www.w3.org/1998/Math/MathML" display="block" data-is-equatio="1" data-latex="\vec{V_{AB}}"><mrow data-mjx-texclass="ORD"><mover><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mi>A</mi><mi>B</mi></mrow></msub><mo stretchy="false">→</mo></mover></mrow></math> is given by

<math xmlns="http://www.w3.org/1998/Math/MathML" display="block" data-is-equatio="1" data-latex="\left|\overrightarrow{V_A}_B\right|=\sqrt{\overrightarrow{V}_A^2+\overrightarrow{V}_B^2+2V_AV_B\cos\left(180-\theta\right)}"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mover><msub><mi>V</mi><mi>A</mi></msub><mo>→</mo></mover><mi>B</mi></msub><mo data-mjx-texclass="CLOSE">|</mo></mrow><mo>=</mo><msqrt><msubsup><mover><mi>V</mi><mo>→</mo></mover><mi>A</mi><mn>2</mn></msubsup><mo>+</mo><msubsup><mover><mi>V</mi><mo>→</mo></mover><mi>B</mi><mn>2</mn></msubsup><mo>+</mo><mn>2</mn><msub><mi>V</mi><mi>A</mi></msub><msub><mi>V</mi><mi>B</mi></msub><mi>cos</mi><mo data-mjx-texclass="NONE">⁡</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>180</mn><mo>−</mo><mi>θ</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></msqrt></math>

<math xmlns="http://www.w3.org/1998/Math/MathML" display="block" data-is-equatio="1" data-latex="\left|\overrightarrow{V_A}_B\right|=\sqrt{\overrightarrow{V}_A^2+\overrightarrow{V}_B^2-2V_AV_B\cos\theta}"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mover><msub><mi>V</mi><mi>A</mi></msub><mo>→</mo></mover><mi>B</mi></msub><mo data-mjx-texclass="CLOSE">|</mo></mrow><mo>=</mo><msqrt><msubsup><mover><mi>V</mi><mo>→</mo></mover><mi>A</mi><mn>2</mn></msubsup><mo>+</mo><msubsup><mover><mi>V</mi><mo>→</mo></mover><mi>B</mi><mn>2</mn></msubsup><mo>−</mo><mn>2</mn><msub><mi>V</mi><mi>A</mi></msub><msub><mi>V</mi><mi>B</mi></msub><mi>cos</mi><mo data-mjx-texclass="NONE">⁡</mo><mi>θ</mi></msqrt></math>

<math xmlns="http://www.w3.org/1998/Math/MathML" display="block" data-is-equatio="1" data-latex="V_{AB}\ =\ \sqrt{V\ _A^2+V\ _B^2-2V_AV_B\cos\theta}"><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mi>A</mi><mi>B</mi></mrow></msub><mtext></mtext><mo>=</mo><mtext></mtext><msqrt><mi>V</mi><msubsup><mtext></mtext><mi>A</mi><mn>2</mn></msubsup><mo>+</mo><mi>V</mi><msubsup><mtext></mtext><mi>B</mi><mn>2</mn></msubsup><mo>−</mo><mn>2</mn><msub><mi>V</mi><mi>A</mi></msub><msub><mi>V</mi><mi>B</mi></msub><mi>cos</mi><mo data-mjx-texclass="NONE">⁡</mo><mi>θ</mi></msqrt></math>


The value of cosθ when the value of θ is between 90˚ and 0˚ ranges from 0 to 1 which is a positive value.

From above three condition we can say that

<math xmlns="http://www.w3.org/1998/Math/MathML" display="block" data-is-equatio="1" data-latex="V_{AB}\left(codition\ 1\right)&lt;V_{AB}\left(codition\ 3\right)&lt;V_{AB}\left(codition\ 2\right)"><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mi>A</mi><mi>B</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>c</mi><mi>o</mi><mi>d</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mtext></mtext><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&lt;</mo><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mi>A</mi><mi>B</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>c</mi><mi>o</mi><mi>d</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mtext></mtext><mn>3</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&lt;</mo><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mi>A</mi><mi>B</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>c</mi><mi>o</mi><mi>d</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mtext></mtext><mn>2</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow></math>

Now let’s looks out some real life examples of relative velocity

a)      When a person looks out from the window on moving bus

Assume that a person setting on a bus moving with some velocity <math xmlns="http://www.w3.org/1998/Math/MathML" display="block" data-is-equatio="1" data-latex="\vec{V_B}"><mrow data-mjx-texclass="ORD"><mover><msub><mi>V</mi><mi>B</mi></msub><mo stretchy="false">→</mo></mover></mrow></math> and he look at a tree out from the bus window the tree is at rest so its velocity <math xmlns="http://www.w3.org/1998/Math/MathML" display="block" data-is-equatio="1" data-latex="\overrightarrow{V_{A}}=0"><mover><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mi>A</mi></mrow></msub><mo>→</mo></mover><mo>=</mo><mn>0</mn></math>  the relative velocity of tree with respect to the person on the bus is given by

<math xmlns="http://www.w3.org/1998/Math/MathML" display="block" data-is-equatio="1" data-latex="\overrightarrow{V_{AB}}=\overrightarrow{V_A}-\overrightarrow{V_B}"><mover><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mi>A</mi><mi>B</mi></mrow></msub><mo>→</mo></mover><mo>=</mo><mover><msub><mi>V</mi><mi>A</mi></msub><mo>→</mo></mover><mo>−</mo><mover><msub><mi>V</mi><mi>B</mi></msub><mo>→</mo></mover></math>

<math xmlns="http://www.w3.org/1998/Math/MathML" display="block" data-is-equatio="1" data-latex="\overrightarrow{V_{AB}}\ =\ 0-\vec{V_B}"><mover><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mi>A</mi><mi>B</mi></mrow></msub><mo>→</mo></mover><mtext></mtext><mo>=</mo><mtext></mtext><mn>0</mn><mo>−</mo><mrow data-mjx-texclass="ORD"><mover><msub><mi>V</mi><mi>B</mi></msub><mo stretchy="false">→</mo></mover></mrow></math>

<math xmlns="http://www.w3.org/1998/Math/MathML" display="block" data-is-equatio="1" data-latex="\overrightarrow{V_{AB}}\ =\ -\vec{V_B}"><mover><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mi>A</mi><mi>B</mi></mrow></msub><mo>→</mo></mover><mtext></mtext><mo>=</mo><mtext></mtext><mo>−</mo><mrow data-mjx-texclass="ORD"><mover><msub><mi>V</mi><mi>B</mi></msub><mo stretchy="false">→</mo></mover></mrow></math>

 The magnitude of  <math xmlns="http://www.w3.org/1998/Math/MathML" display="block" data-is-equatio="1" data-latex="\vec{V_{AB}}"><mrow data-mjx-texclass="ORD"><mover><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mi>A</mi><mi>B</mi></mrow></msub><mo stretchy="false">→</mo></mover></mrow></math> is given by

<math xmlns="http://www.w3.org/1998/Math/MathML" display="block" data-is-equatio="1" data-latex="V_{AB}\ =\ V_B"><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mi>A</mi><mi>B</mi></mrow></msub><mtext></mtext><mo>=</mo><mtext></mtext><msub><mi>V</mi><mi>B</mi></msub></math>

So this implies that the magnitude of relative velocity is equal to the velocity of bus and opposite in direction

b)  When two vehicles cross each other

Let suppose that two vehicles are moving with velocities <math xmlns="http://www.w3.org/1998/Math/MathML" display="block" data-is-equatio="1" data-latex="\overrightarrow{V}_{A}"><msub><mover><mi>V</mi><mo>→</mo></mover><mrow data-mjx-texclass="ORD"><mi>A</mi></mrow></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="block" data-is-equatio="1" data-latex="\vec{V_B}"><mrow data-mjx-texclass="ORD"><mover><msub><mi>V</mi><mi>B</mi></msub><mo stretchy="false">→</mo></mover></mrow></math> respectively in opposite directions to each other. The relative velocity of bus A with respect to bus B is given by

The magnitude of  is given by


<math xmlns="http://www.w3.org/1998/Math/MathML" display="block" data-is-equatio="1" data-latex="\overrightarrow{V_{AB}}=\overrightarrow{V_A}-\overrightarrow{V_B}"><mover><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mi>A</mi><mi>B</mi></mrow></msub><mo>→</mo></mover><mo>=</mo><mover><msub><mi>V</mi><mi>A</mi></msub><mo>→</mo></mover><mo>−</mo><mover><msub><mi>V</mi><mi>B</mi></msub><mo>→</mo></mover></math>

The magnitude of <math xmlns="http://www.w3.org/1998/Math/MathML" display="block" data-is-equatio="1" data-latex="\overrightarrow{V}_{AB}"><msub><mover><mi>V</mi><mo>→</mo></mover><mrow data-mjx-texclass="ORD"><mi>A</mi><mi>B</mi></mrow></msub></math>  is given by


<math xmlns="http://www.w3.org/1998/Math/MathML" display="block" data-is-equatio="1" data-latex="\left|\overrightarrow{V}_{AB}\right|\ =\ \sqrt{\vec{V_A}^2+\vec{V_B}^2-2V_A^{ }V_B^{ }\cos180}^{ }"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mover><mi>V</mi><mo>→</mo></mover><mrow data-mjx-texclass="ORD"><mi>A</mi><mi>B</mi></mrow></msub><mo data-mjx-texclass="CLOSE">|</mo></mrow><mtext></mtext><mo>=</mo><mtext></mtext><msup><msqrt><msup><mrow data-mjx-texclass="ORD"><mover><msub><mi>V</mi><mi>A</mi></msub><mo stretchy="false">→</mo></mover></mrow><mn>2</mn></msup><mo>+</mo><msup><mrow data-mjx-texclass="ORD"><mover><msub><mi>V</mi><mi>B</mi></msub><mo stretchy="false">→</mo></mover></mrow><mn>2</mn></msup><mo>−</mo><mn>2</mn><msubsup><mi>V</mi><mi>A</mi><mrow data-mjx-texclass="ORD"/></msubsup><msubsup><mi>V</mi><mi>B</mi><mrow data-mjx-texclass="ORD"/></msubsup><mi>cos</mi><mo data-mjx-texclass="NONE">⁡</mo><mn>180</mn></msqrt><mrow data-mjx-texclass="ORD"/></msup></math>

<math xmlns="http://www.w3.org/1998/Math/MathML" display="block" data-is-equatio="1" data-latex="\left|\overrightarrow{V}_{AB}\right|\ =\ \sqrt{\vec{V_A}^2+\vec{V_B}^2+2V_A^{ }V_B^{ }}^{ }"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mover><mi>V</mi><mo>→</mo></mover><mrow data-mjx-texclass="ORD"><mi>A</mi><mi>B</mi></mrow></msub><mo data-mjx-texclass="CLOSE">|</mo></mrow><mtext></mtext><mo>=</mo><mtext></mtext><msup><msqrt><msup><mrow data-mjx-texclass="ORD"><mover><msub><mi>V</mi><mi>A</mi></msub><mo stretchy="false">→</mo></mover></mrow><mn>2</mn></msup><mo>+</mo><msup><mrow data-mjx-texclass="ORD"><mover><msub><mi>V</mi><mi>B</mi></msub><mo stretchy="false">→</mo></mover></mrow><mn>2</mn></msup><mo>+</mo><mn>2</mn><msubsup><mi>V</mi><mi>A</mi><mrow data-mjx-texclass="ORD"/></msubsup><msubsup><mi>V</mi><mi>B</mi><mrow data-mjx-texclass="ORD"/></msubsup></msqrt><mrow data-mjx-texclass="ORD"/></msup></math>

<math xmlns="http://www.w3.org/1998/Math/MathML" display="block" data-is-equatio="1" data-latex="\left|\overrightarrow{V}_{AB}\right|\ =\ \sqrt{V_A^2+V_B^2+2V_A^{ }V_B^{ }}^{ }"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mover><mi>V</mi><mo>→</mo></mover><mrow data-mjx-texclass="ORD"><mi>A</mi><mi>B</mi></mrow></msub><mo data-mjx-texclass="CLOSE">|</mo></mrow><mtext></mtext><mo>=</mo><mtext></mtext><msup><msqrt><msubsup><mi>V</mi><mi>A</mi><mn>2</mn></msubsup><mo>+</mo><msubsup><mi>V</mi><mi>B</mi><mn>2</mn></msubsup><mo>+</mo><mn>2</mn><msubsup><mi>V</mi><mi>A</mi><mrow data-mjx-texclass="ORD"/></msubsup><msubsup><mi>V</mi><mi>B</mi><mrow data-mjx-texclass="ORD"/></msubsup></msqrt><mrow data-mjx-texclass="ORD"/></msup></math>

 <math xmlns="http://www.w3.org/1998/Math/MathML" display="block" data-is-equatio="1" data-latex="V_{AB}\ =\ \sqrt{\left(V_A^{ }+V_B^{ }\right)^2}"><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mi>A</mi><mi>B</mi></mrow></msub><mtext></mtext><mo>=</mo><mtext></mtext><msqrt><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msubsup><mi>V</mi><mi>A</mi><mrow data-mjx-texclass="ORD"/></msubsup><mo>+</mo><msubsup><mi>V</mi><mi>B</mi><mrow data-mjx-texclass="ORD"/></msubsup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mn>2</mn></msup></msqrt></math>

<math xmlns="http://www.w3.org/1998/Math/MathML" display="block" data-is-equatio="1" data-latex="V_{AB}\ =\ V_A^{ }+V_B^{ }"><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mi>A</mi><mi>B</mi></mrow></msub><mtext></mtext><mo>=</mo><mtext></mtext><msubsup><mi>V</mi><mi>A</mi><mrow data-mjx-texclass="ORD"/></msubsup><mo>+</mo><msubsup><mi>V</mi><mi>B</mi><mrow data-mjx-texclass="ORD"/></msubsup></math>

It concludes that the relative velocity of bus A with respect to bus B is greater than the velocity of bus A observed by a person on ground because velocity will be <math xmlns="http://www.w3.org/1998/Math/MathML" display="block" data-is-equatio="1" data-latex="\overrightarrow{V_{A}}"><mover><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mi>A</mi></mrow></msub><mo>→</mo></mover></math> on ground.

c)  When a person walking on rain

When a person walks in the rain with an umbrella in his hand. He needs his umbrella to hold a little bit of incline that is due the relative velocity of rain. Let a person walking with velocity <math xmlns="http://www.w3.org/1998/Math/MathML" display="block" data-is-equatio="1" data-latex="\vec{V_B}"><mrow data-mjx-texclass="ORD"><mover><msub><mi>V</mi><mi>B</mi></msub><mo stretchy="false">→</mo></mover></mrow></math>  on rain and the rain is dropping vertically with the velocity of <math xmlns="http://www.w3.org/1998/Math/MathML" display="block" data-is-equatio="1" data-latex="\vec{V_A}"><mrow data-mjx-texclass="ORD"><mover><msub><mi>V</mi><mi>A</mi></msub><mo stretchy="false">→</mo></mover></mrow></math>  then the relative velocity of rain with respect to the person walking on rain is given by

 <math xmlns="http://www.w3.org/1998/Math/MathML" display="block" data-is-equatio="1" data-latex="\overrightarrow{V_{AB}}=\overrightarrow{V_A}-\overrightarrow{V_B}"><mover><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mi>A</mi><mi>B</mi></mrow></msub><mo>→</mo></mover><mo>=</mo><mover><msub><mi>V</mi><mi>A</mi></msub><mo>→</mo></mover><mo>−</mo><mover><msub><mi>V</mi><mi>B</mi></msub><mo>→</mo></mover></math>

The magnitude of  is given by 

<math xmlns="http://www.w3.org/1998/Math/MathML" display="block" data-is-equatio="1" data-latex="\left|\vec{V_{AB}}\right|\ =\ \sqrt{\vec{V_A}\ ^2\ +\ \vec{V_B^{ }}\ _{ }^2\ -2V_AV_B\cos90}"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mrow data-mjx-texclass="ORD"><mover><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mi>A</mi><mi>B</mi></mrow></msub><mo stretchy="false">→</mo></mover></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><mtext></mtext><mo>=</mo><mtext></mtext><msqrt><mrow data-mjx-texclass="ORD"><mover><msub><mi>V</mi><mi>A</mi></msub><mo stretchy="false">→</mo></mover></mrow><msup><mtext></mtext><mn>2</mn></msup><mtext></mtext><mo>+</mo><mtext></mtext><mrow data-mjx-texclass="ORD"><mover><msubsup><mi>V</mi><mi>B</mi><mrow data-mjx-texclass="ORD"/></msubsup><mo stretchy="false">→</mo></mover></mrow><msubsup><mtext></mtext><mrow data-mjx-texclass="ORD"/><mn>2</mn></msubsup><mtext></mtext><mo>−</mo><mn>2</mn><msub><mi>V</mi><mi>A</mi></msub><msub><mi>V</mi><mi>B</mi></msub><mi>cos</mi><mo data-mjx-texclass="NONE">⁡</mo><mn>90</mn></msqrt></math> 

<math xmlns="http://www.w3.org/1998/Math/MathML" display="block" data-is-equatio="1" data-latex="V_{AB}\ =\ \sqrt{V_A\ ^2\ +V_B^{\ \ 2}}"><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mi>A</mi><mi>B</mi></mrow></msub><mtext></mtext><mo>=</mo><mtext></mtext><msqrt><msub><mi>V</mi><mi>A</mi></msub><msup><mtext></mtext><mn>2</mn></msup><mtext></mtext><mo>+</mo><msubsup><mi>V</mi><mi>B</mi><mrow data-mjx-texclass="ORD"><mtext></mtext><mtext></mtext><mn>2</mn></mrow></msubsup></msqrt></math>


The below picture shows the relative velocity used in real life



Post a Comment

0Comments
Post a Comment (0)